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Abstract: This paper presents a comprehensive study that focuses on simulating a vehicle within the 
autonomousvehicle simulator, CARLA. The primary objective of this research is to enable the vehicle to 
accurately follow apredetermined trajectory while effectively avoiding obstacles in its environment. Deep Q-
Learning algorithms areemployed to achieve this goal, aiming to optimize the safety of the vehicle'snavigation. 
The simulation of the vehicleserves as a platform for studying the rules of Deep Q-Networks (DQN) and their 
impact on the vehicle's navigation.The objective is to identify the most suitable rule that leads to improved 
optimization of the vehicle's trajectory. Byleveraging the capabilities of CARLA as the simulation environment 
and implementing state-of-the-art DQNalgorithms, this research contributes to the advancement of 
autonomous vehicle technology. The findings of this studyhave practical implications for enhancing the safety 
and efficiency of autonomous vehicle navigation systems, makingthem highly relevant to 
industryprofessionals, researchers, and academic scholars in this field. 
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1. INTRODUCTION 
In the realm of autonomous driving, the quest 
for enhancing vehicle navigation efficiency 
and safety has driven researchers to explore 
innovative solutions rooted in artificial 
intelligence.Initially, early efforts in applying 
reinforcement learning (RL) to autonomous 
vehicles primarily concentrated on maneuver 
execution [1]. Agents learned steering and 
braking control directly from environmental 
data, enabling them to execute driving 
maneuvers in simple scenarios. 
Nevertheless, conventional algorithms for 
low-level control, as indicated by references 
[2], [3], have consistently demonstrated 
superior performance compared to RL 
approaches, which tend to exhibit slower 
learning rates and suboptimal performance. 
Consequently, we advocate for the utilization 
of RL in high-level decision-making tasks 
within more intricate settings involving 
multiple adversarial vehicles. 
 
To manage this increased complexity, a 
proposed strategy involves the separation of 
the planning task into distinct high-level 
decision-making and maneuver execution 
layers [4]. In this hierarchical approach [5], 
the execution layer handles motion-related 
aspects, while the decision-making layer 
carries out high-level actions. 
 

An alternative approach involves end-to-end 
learning [6], [7], where control commands are 
directly inferred from sensor-derived input. 
Leveraging advancements in deep learning 
algorithms and modern hardware capabilities, 
NVIDIA researchers introduced a supervised 
learning method based on convolutional 
neural networks (CNN) for end-to-end control 
of automobiles [8]. Subsequent studies have 
adopted and built upon this end-to-end 
learning approach [9], [10]. 
 
In our focus on RL-based approaches for 
high-level decision making at intersections, 
the utilization of Deep Q-Network (DQN) 
algorithms is prevalent [11]. Additionally, 
references [12], [13] employ DQN algorithms 
to address diverse driver behaviors. Some 
studies, exemplified by [14], [15], specifically 
train at occluded intersections using a risk-
based reward function. The input vector 
encompasses details about the ego vehicle, 
existing lanes, and surrounding vehicles. 
 
Motivated by these challenges and 
opportunities, our research aims to contribute 
to the advancement of autonomous driving 
technology by optimizing vehicle navigation 
through Deep Q-Learning within the CARLA 
autonomous vehicle simulator. Through 
simulations, our study seeks to identify 
effective rules for enhancing navigation 
performance, with a particular focus on 

mailto:r.boumegoura@univ-skikda.dz


ALGERIAN JOURNAL OF SIGNALS AND SYSTEMS (AJSS) 
 

Vol. 9, Issue 2, June-2024| ISSN: 2543-3792- EISSN: 2676-1548 129 
 

achieving precise trajectory following and 
obstacle avoidance. This research holds 
significant promise for elevating the safety 
and efficiency of autonomous vehicles, 
addressing critical aspects of high-level 
decision-making in complex driving 
scenarios. 

2. DEEP REINFORCEMENT 
LERANING METHODOLOGY 

 Reinforcement Learning (RL) 

As a form of machine learning, RL addresses 
the agent's interaction with the environment 
by learning strategies aimed at maximizing 
returns or achieving specific objectives[16]. 
The prevalent model in RL is the standard 
Markov Decision Process (MDP), which 
comprises a tuple (S, A, R, p) defining the 
control problem. Here, S and A represent the 
state space and control space, respectively, R 
signifies the reward function, and p denotes 
the state transition. A mapping from sets of 
states to sets of actions is denoted as: 
π : S A. At any given time t, the action and 
state of the agent in the environment can be 
represented as at∈A and st∈S, respectively. 
The probability that the agent performs an 
action and transitions to the subsequent state  
st+1 ∈S is represented as p(st, at), with 
associated reward rt. To prevent potential 
biases and infinite loops in an infinite time 
series caused by directly summing rewards, a 
discount factor γ is introduced, prioritizing the 
current reward over future ones. 
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1 2 3 1

0

... i
t t t t t i

i

R r r r r  


    



         (1)  

In the current state s, the agent executes 
action a according to strategy π, consistently 
following it to carry out operations. As a 
result, it acquires the state function vπ(s) and 
the state-action function Qπ(s, a), which are 
defined as follows: 
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In this context, where π represents the control 
policy, the optimal strategy aims to maximize 
future returns. The solution process can be 
broadly divided into two stages: prediction 
and action. During prediction, a strategy is 
provided to assess the associated vπ(s) and 
Qπ(s, a). Subsequently, during action, the 
optimal action corresponding to the current 
state is determined based on the value 
function. Consequently, the state-action 
function is reformulated into a recursive form 
to update the algorithm. 
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The optimal policy is derived from the state-
action value function. 

( ) arg max ( , )
a

s Q s a                (4) 

As an iterative process, RL faces two 
challenges each time: evaluating a policy 
function and updating the policy based on the 
value function. Traditional RL approaches aim 
to find the optimal policy by iteratively solving 
Bellman's equation, which involves making 
Qπ(s,a) converge to obtain the optimal 
strategy. However, employing Bellman's 
equation to solve the Q function in larger state 
spaces can be computationally expensive in 
practical solution processes. 

 

Fig. 1 Reinforcement Learning Scheme[] 

 

 Deep Q network 

To mitigate the computational costs 
associated with the iterative process, a 
neural network is employed to approximate 
the state-action value function. Initially, the 
update function of Q-learning can be 
expressed as: 

'
( , ) ( , ) max ( ', ') ( , )

a
Q s a Q s a r Q s a Q s a     

  
  (5) 

A varying learning rate α within the range  
[0, 1] is utilized to balance the significance of 
the current environment's learning 
experience against previous ones. Here, s' 
and a' represent the state and action 
quantities in the subsequent procedure. The 
Deep Q-Network (DQN), which integrates 
neural network techniques with Q-learning, 
was introduced to approximate the action-
value function within high-dimensional state 
spaces. 

( , ) ( , )Q s a Q s a                  (6) 

In contrast to Q-Learning, where only a 
neural network and a target Q network are 
utilized, DQN incorporates experience replay 
during training. The stochastic gradient 
descent (SGD) algorithm is employed to 
update the network parameters throughout 
the training process. The loss function of 
DQN is defined as follows: 
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The optimization objective for the state-action 
function can be defined as: 

'
max ( ', ' )

a
targetQ r Q s a          (8) 

Where θ represents a neural network 
parameter, the policy gradient method is a 
model-free approach aimed at optimizing the 
expected total return of a strategy, exploring 
the optimal strategy directly within the 
strategy space[17]. The greedy policy selects 
the action that maximizes the value function 
on each occasion. However, states and 
action values that were not sampled 
previously will not be chosen subsequently 
because they have not been evaluated. The 
ε-greedy policy combines the benefits of 
exploration and exploitation. Actions are 
chosen stochastically from all available 
actions with a probability of ε, while the best 
action is selected with a probability of 1-ε. 

3. Simulation & Results 

In our research, we deploy reinforcement 
learning, specifically deep Q-learning, in the 
CARLA simulation environment, where the 
agent, resembling a self-driving car, is tasked 
with navigating through a virtual environment 
by following predefined waypoints along a 
designated trajectory. This involves 
configuring the environment with vehicles, 
sensors, and waypoints, connecting to the 
CARLA server, and establishing vehicle 
spawn points. The fundamental objective is 
for the agent to efficiently maneuver the 
environment, adhering to specified rules, and 
avoiding obstacles while reaching the 
designated waypoints.  
 
The simulation unfolds in several key stages: 
first, the generation of waypoints that define 
the desired path; second, the navigation of 
the agent through the environment, 
leveraging sensor data to make informed 
decisions; third, the implementation of a 
reward and penalty system where the agent 
receives feedback based on its actions, 
encouraging adherence to desired behaviors 
and discouraging deviations; fourth, the 
learning process, where the agent uses the 
received feedback to iteratively improve its 
navigation strategy over time; and finally, the 
iterative optimization phase, where the agent 
refines its behavior through repeated 
interactions with the environment.  
 
By following waypoints and receiving 
feedback, the agent gradually learns to 
navigate the simulated environment 
effectively, ultimately achieving its goal of 

reaching designated destinations while 
adhering to predefined rules and constraints. 
This simulation framework provides a 
valuable platform for studying and advancing 
autonomous vehicle navigation technology. 
 

 

Fig. 2Framework Scheme [20] 

 Case Study 1: 

The initial model, with basic conditions (4 
actions, 6 reward rules), aims to observe its 
functionality and refine actions and rewards 
for improved accuracy. Test conditions for 
Model 1 are specified, including GPU usage, 
total learning time, trajectory type, actions, 
rewards, and sensors employed. 

Table 1   Test Conditions (Model 1) 

Test Conditions (Model 1) 

GPU Fraction 
Used 

0.35 
Total 

Training 
Time 

1h 13min 8sec 

Refresh Rate 
(γ) 

0.95 
Learning 
Rate (α) 

Degradation:α*0.95 

Trajectory 
Type 

Straight line 

Actions 

 Action 1:Accelerate 
 Action 2: Turn right 
 Action 3: Turn left 

 Action 4: Decelerate 

Rewards 

 Reward1: Collision (-30) 
 Reward 5: Roll to a final point (+50) 
 Reward 6: Line following (+10) 
 Reward 7: Near-line navigation (+1) 
 Reward 8: Off-line navigation (-30) 

UsedSensors 
 Camera RGB 
 Collision Sensor 

 
Figure 3.representing the records from the 
1st model trained over 200 episodes, we 
observe an average reward curve displaying 
values between 150 and 200 points. These 
values appear unusually high and contradict 
the established rules. This discrepancy may 
be attributed to the agent's inclination 
towards action number 4 (deceleration), 
which slows down the vehicle, allowing for 
more time to accumulate rewards. 
Consequently, this phenomenon leads to 
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false learning, where the agent is rewarded 
without actively performing. Upon examining 
the model's performance, it became evident 
that certain additional conditions must be 
considered to optimize its actions. 

 

Fig. 3The average value of rewards (Case 1) 

 
In comparison to other reward statistics (max 
and min) from Fig 4. And Fig 3, we observe a 
direct relationship with the average reward 
curve in terms of evolution, with some 
disturbances hindering the development of 
the max curve (not entirely stable). This 
disturbance may indicate that the agent did 
not select the best action to perform, 
suggesting slow learning. 
 

 

Fig. 4Maximum reward values (Case 1) 

 

 

Fig. 5Minimum reward values (Case 1) 

 
The overall conclusion of this test case is that 
it serves as a good starting point, but the 
model could greatly benefit from the addition 
of further rules. 

 Case Study 2: 

Building upon the foundation of the previous 
model, a new reward rule was introduced to 
address the primary issue encountered in the 
initial model: gaining points without actively 
performing significant actions besides 
decelerating near waypoints. All other 
conditions remained unchanged as no 
apparent issues were identified.  
 

Table 1   Test Conditions (Model 2) 

Test Conditions (Model 2) 

GPU Fraction 
Used 

0.35 
Total 

Training 
Time 

1h 13min 8sec 

Refresh Rate 
(γ) 

0.95 
Learning 
Rate (α) 

Degradation:α*0.95 

Trajectory 
Type 

Straight line 

Actions 

 Action 1:Accelerate 
 Action 2: Turn right 
 Action 3: Turn left 
 Action 4: Decelerate 

Rewards 

 Reward1: Collision (-30) 

 Reward 4: Very slow navigation or 
no movement (-10) 

 Reward 5: Roll to a final point (+50) 
 Reward 6: Line following (+10) 

 Reward 7: Near-line navigation (+1) 
 Reward 8: Off-line navigation (-30) 

UsedSensors 
 Camera RGB 
 Collision Sensor 

 

The model (second model) is trained for 200 
episodes and depicted in the three curves 
(average-max-min). In the second model, we 
observe reasonably values ranging between 
110 and 120, aligning with the set reward rule 
values, indicating the vehicle's behavior after 
adding the 4th rule. We can easily see how 
the vehicle learned to navigate realistically 
and logically compared to the previous model 
and its learning process.  
 

 

Fig. 6The average value of rewards (Case 2) 

 
Concerning other reward statistics (max and 
min), especially the max curve, we notice 
stabilization after 60 episodes at a value of 
120 points, indicating the agent has acquired 
optimal actions during its learning process. 
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Fig. 7Maximum reward values (Case 2) 

 

 

Fig. 8Minmum reward values (Case 2) 

 
Based on these two experiments, we can 
conclude that optimizing vehicle control 
heavily depends on the number of chosen 
actions, adjusting perfect reward rules, and 
hyperparameter tuning of the chosen 
methods, all of which lead to the perfect 
outcome for the agent to adopt the optimum 
behavior consistently, whether it's following a 
trajectory or avoiding an obstacle. 

4. CONCLUSION 

In conclusion, our analysis of simulation 
results highlights the significant potential for 
optimizing vehicle driving using DQN in 
conjunction with logical and realistic rule 
adjustments. This optimization offers 
promising prospects for achieving realistic 
and optimal driving and navigation in 
CARLA's simulated environments.Overall, 
our research emphasizes the effectiveness of 
Deep Q-Learning within the CARLA 
framework for advancing autonomous driving 
capabilities. By refining learning strategies 
and rule settings, we can further enhance the 
performance and realism of autonomous 
vehicles, contributing to the development of 
safer and more efficient transportation 
systems in the future. 
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